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Abstract-A numerical study is made of double-diffusive convection in a rotating annulus. Motions are 
driven by the externally applied horizontal temperature gradient. The stable solutal gradient is aligned in 
the vertical direction. Parametric studies are performed in order to acquire an understanding of the 
qualitative character of the axisymmetric basic state of the resulting flow. The aim is to inquire as to the 
effect of rotation on the global flow structure. A high-accuracy pseudospectral numerical scheme is 
employed to integrate the axisymmetric incompressible Navier-Stokes equations. Computational results 
are presented to disclose the detailed fields of azimuthal and meridional flows, temperature, and solute. A 
total of nine parameter sets, produced by a combination of three values of stratification number and three 
buoyancy ratios, were dealt with in the computation. The Prandtl number was set Pr = 1.0, the thermal 
Rayleigh number Ra, = IO’, and the Lewis number Le = 10.0. For a low buoyancy ratio, motions are 
vigorous, especially when the rotation effect is small, resembling a sidewall-heated pure thermal convection. 
In the interior, a linear temperature stratification and a well-mixed solutal field are seen. When the buoyancy 
ratio is moderate, the overall character of flow shows considerable dependence on the relative strength of 
rotation effect. For a large buoyancy ratio, the stabilizing solutal effect is dominant. The convective 

activities are very weak, and heat transfer is mostly conductive. 

1. INTRODUCTION 

BUOYANCY-DRIVEN motions of a fluid, due to the sim- 
ultaneous presence of two (or possibly more) diffusive 
components, are generally termed double-diffusive 
convection [ 11. This type of convection has long been 
recognized to be significant, among others, in oceanic 
flow processes. For the oceans, the primary diffusing 
agents are heat and concentration of matter (e.g. salt). 
A substantial amount of research has been accumu- 
lated on this topic [2, 31. 

Recent advances in material processing tech- 
nologies have expanded the interests in double-diffus- 
ive convective transport phenomena. In these situ- 

ations, double-diffusive convection is caused by the 
gradients of temperature and of solute (e.g. dopant or 
impurity) in the flow field. In response to the devel- 
opments in engineering applications, considerable 
effort has been devoted to the study of double-diffus- 
ive convection in a confined space. Of particular inter- 
est is the flow configuration, in which the external 
temperature gradient is imposed in the horizontal and 
the solutal gradient in the vertical direction [4]. This 
flow geometry provides a rudimentary model for the 
growth of crystals [5]. Some of the fundamental flow 
characteristics of this double-diffusive convection in 
a rectangular cavity of aspect ratio O(1) have been 

t Author to whom correspondence should be addressed. 

demonstrated by experimental visualizations as well 

as numerical simulations [612]. These preceding fin- 
dings, although restricted in scope and in parameter 
settings, established the major dimensionless par- 
ameters and identified some of the distinctive flow 
regimes. Especially, the layered velocity field structure 
and the associated thermal and solutal fields were 
delineated by detailed numerical simulations [4]. 

It should be pointed out that, in many practical 

situations of material processing engineering appli- 
cations, the entire system rotates steadily about a ver- 
tical axis [5]. The rotation is intended to provide an 
additional means of control of the whole dynamic 
system. It then follows that the dynamics of flow is 
crucially influenced by the rotation effects. These con- 
cerns warrant in-depth evaluations of transport 
phenomena in more realistic situations pertinent to 
modern material processing procedures. 

In this paper, a systematic numerical investigation 
was conducted of double-diffusive convection in a 
closed, rotating annular cavity. Attention is directed 
to the flow configurations which give rise to double- 
diffusive convective motions under reasonably strong 
rotation effects. In the present work, therefore, 
numerical solutions are sought to depict the axisym- 
metric flows attainable in cylindrical geometries. Para- 
metric studies were performed to reveal the impacts 
of principal dynamic ingredients involved in the pro- 
cesses. By the introduction of rotation effects, the 
system also entails, in addition to the usual forces, the 
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gravitational acceleration 
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Lewis number, K/K~ 

Brunt-Vaisala frequency, ~(~sgAS~H) 
reduced pressure 
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radial space coordinate 
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thermal Rayleigh number, garATH3/~v 
buoyancy ratio, Ra,jRa, 
solute concentration 
stratifi~tion parameter (IV/Q)’ 
temperature 
time coordinate 
radial velocity component 
azimuthal velocity component in a 
rotating frame 
axial velocity component 

z axial space coordinate. 

Greek symbols 

OLT coefficient of thermal expansion 

ES solute analogue, c+ 

: 

thermal Rossby number, ~~~AT~4~~H 
solutal Rossby number, usgAS/4f12H 

E Ekman number, v/2I2H 2 

11 azimuthal vorticity component 
K thermal diffusivity 

6 sohrtd] diffusivity 
v kinematic viscosity 

P density 
Y meridional stream function 
R local angular velocity. 

Superscript 
* dimensional variables. 

Coriolis force, centrifugal force, and the curvature 
effects in the overall force balance. The present study, 
therefore, may be construed as being a sequel to the 
earlier numerical accounts [4], which dealt with 
double-diffusive convection in a non-rotating 
environment. 

The numerically constructed axisymmetric flows 
will provide source info~ation against which future 
experimental data could be compared. Furthermore, 
the computed axisymmetric flows will serve as the 
basic states to analyze complex three-dimensional 
flows which are possible under proper parameters 
spaces. 

2. NUMERICAL MODEL 

Consider a viscous incompressible fluid, of kine- 
matic viscosity v, thermal diffusivity K~, and solutal 
diffusivity KS, contained in a vertically mounted cyl- 
indrical annulus of height H, and the radius of the 
inner (outer) sidewall is H (2H) (i.e. the aspect ratio. 
height/width is 1.0). In accordance with the basic 
problem statement, double-diffusive convection is 
maintained by the interplay of the externally applied 
temperature gradient (in the horizontal direction) 
and the solutal gradient (in the vertical direction). 
The entire setup is placed on a rotating turntable, 
which rotates steadily at angular frequency Q about 
the annulus central axis. The task is to describe 
the axisymmetric flow in the rotating annulus, and a 
schema is shown in Fig. 1. 

The fluid flow is governed by the Navier-Stokes 
equations, and the Boussinesq-fluid approximation 
will be incorporated. Viewed in a rotating cylindrical 
coordinate system (r. 8, z), with the corresponding 

velocity components (u, I), w), these equations can be 
expressed as 

SU 
-_= 
i?t 

- & (ru2) - ; (WV) 

+ (,++g++%-;) (1) 

- 2 +BTT-&S+aV2W (3) 

ar 
-= -~(ruT~-~(~l~~+~v=T at (4) 

as * 
t= 

--$‘Us)-~(WS)+jY&V=s (5) 

!_I-l:-:;‘lr 
FIG. I. Schematic diagram of the model 
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&(ru)+gyO 

p = po[l -c+(T- To)+as(~-&)l (7) 

where 

a a a2 
v2=- I- +- ( > r dr dr a2’ 

The coefficient of thermometric (solutal) expansion of 
the fluid is noted by C+(Q). 

In the above, the equations have been made dimen- 
sionless by adopting the following non-dimensional 
quantities: (r,z) = (r*,z*)/H, t = t*(2Q), V = V*/ 
2HQ, S = (S* - S;)/AS, T = (T* - T,*)/AT, p = p*/ 

’ (p$4QZH2), p = p*/p$, in which the asterisk denotes 
the dimensional counterparts. The externally imposed 
dimensional temperature (solute) difference across the 
annulus width (height) is AT(AS), and subscript 0 
indicates the reference value. 

As is obvious in the governing equations, the fol- 
lowing relevant non-dimensional parameters emerge : 

V 

E=m’ 

Ra, = 
gc+ATH’ 

KTV ’ 

Ras = 
gusASH’ 

lcsv 1 

R”=$, 
T 

Pr=2, 
KT 

Ekman number 

thermal Rayleigh number 

solutal Rayleigh number 

buoyancy ratio 

Prandtl number 

Lewis number 

Brunt-Vaisala frequency 

stratification parameter 

/IT = u,gAT/4Q2H, thermal Rossby number 

js = usgAS/4C12H, solutal Rossby number. 

The unsteady terms are retained for the purpose of 
numerical calculations, and the large-time converged 
solutions will be taken as the steady state values. In 
the actual numerical model, the fluid is initially in a 
state of rigid-body rotation at uniform temperature 
T = 0 everywhere, with a vertically linear solutal dis- 
tribution. At time t = 0, the temperature at the inner 
cylindrical side wall (r = 1) is raised to T = 1 and 
maintained so thereafter. The horizontal lids are 
thermally insulated, and the vertical side walls are 
impermeable to solute. Viewed in the frame rotating 
at Q, the velocity components are zero at the solid 

walls. Therefore, the initial and boundary conditions 
are written as 

u = v = w = 0, at t = 0 (8) 

and 

aT 
-=O, S=l, u=v=w=O, atz=O 
az 

ar 
z=O, S=O, u=v=w=O, atz=l 

T= 1, 
as 
z=O, u=v=w=O, atr=l 

T=O, $ 0, u = v = w = 0, at r = 2. (9) 

The above system of equations is solved by adopting 
a numerical scheme based on a high-accuracy pseudo- 
spectral method. In the azimuthal direction, the Four- 
ier series is employed as the expansion function. In 
the radial and vertical directions, the Chebyshev poly- 
nomials are used. The method of matrix multipliers is 
utilized to evaluate the first and second derivatives. 
The unsteady solutions are acquired, using the time- 
splitting technique of Chorin [13]. The crux of this 
numerical procedure is that all the calculations can 
be conveniently represented in the form of matrix 
operators. Consequently, the main parts of the routine 
are fully vectorized for the modern supercomputer 
with vector processors. The details of the present 
numerical schemes are available in Ku et al. [ 14, 151; 
by implementing an amended version of this numeri- 
cal method, Hyun and Kwak [9] recently reported a 
successful depiction of three-dimensional baroclinic 
waves in a rotating annulus. The calculations in the 
present study were made on a CRAY-YMP super- 
computer. 

3. RESULTS AND DISCUSSION 

A large number of non-dimensional parameters are 
involved in the flow processes. It is, therefore, essential 
that the parametric studies should be carefully sorted 
out, such that the principal parameter spaces are to be 
properly covered. The major objective of the present 
study is to comprehend the qualitative effect of the 
rotation of the cavity on the character of double- 
diffusive convection in the container. Accordingly, the 
characteristic variations of St, denoting the relative 
strengths of buoyancy and rotation, were given due 
consideration. In the present computations, three dec- 
ades of the values of St, i.e. 0.1, 1.0, and 10.0, were 
selected. These would exemplify the situations where- 
by the rotation effect, compared to the overall buoy- 
ancy effect, is dominant, comparable, and minor, 
respectively. Another crucial parameter in double- 
diffusive convection is the buoyancy ratio R, ; this was 
amply stressed in the prior studies for non-rotating 
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double-diffusion [I& 171. The eminent character of 
flow is determined by the interplay of buoyancy effects 
due to the temperature and solutal gradients. Conse- 
quently, three vaiues of R,,,( = 0.1, I .O, 10.0) were 
chosen for computations. Again, these would span 
the characteristic parameter regions whereby the sta- 
bilizing solutal effect is, respectively. meager, com- 
parable, and dominant in con~parison to the desta- 
bilizing temperature effect. In line with this reasoning, 
a total of nine sets of explicit computational results 
were obtained. The Prandtl number was set as 
Pr = 1.0, the thermal Rayleigh number Ru, = 105, 

and the Lewis number Le = 10.0. in the present for- 
mulations, the values of the Ekman number cannot be 
independently prescribed once these other parameters 
are fixed. For all the computed cases, however, the 
Ekman numbers are always much smaller than unity. 

The results are now examined in a systematic man- 
ner to disclose the main character of flow. For each 
computational set, four plots are constructed to illus- 
trate the isolines of azimuthal velocity (r), meridional 
stream function (Y), temperature (T), and solutal 
(S) fields. Here, Y is defined such that u = W/r dr. 

w = -(N/r au) [9]. 
Much can also be learned about the relative import- 

ance of the individual dynamical effect which are 
expressed in the governing equations. For this 
purpose, the equation for the azimuthal vorticity, 
q = (au/&) -(&v/&f, is useful. This equation can be 
obtained by cross-differentiating the U- and k+momen- 
turn equations 

(A) (B) 

(Cl 6)) tW 

The marked terms on the right-hand side of equa- 
tion (10) represent, respectively, the nonlinear advec- 
tion (A), Coriolis and curvature effects (B), viscous 
diffusion effect (C), buoyancy due to temperature 
gradient (D), and buoyancy due to solutal gradient 
(E). The relative magnitudes of these terms will be 
compared in an effort to gauge the significance of each 
dynamic effect. 

The results pertaining to the case of R,, = 0.1 are 
exhibited in Figs. 2-4. In accordance with the defi- 
nition of R,, the thermal buoyancy effect outweighs 
the solutaf buoyancy effect. It is recalled that, in the 
present flow setup, the horizontally directed thermal 
gradient is the primary cause for convective motions. 
The stable solutal gradient, which is aligned in the 
vertical, tends to inhibit vertical flows. Figure 2(a) 
exemplifies the case of small St (St = 0.1, and for this 
parameter set, the Ekman number E = 1.85 x 10-3). 
The comparative influence of rotation effect is sub- 
stantial. The meridional circulation flows and the 
associated azimuthal flow are moderate in magnitude. 
The azimuthal velocity is positive (negative) in the 
lower (upper) portion of the cavity. The isotherms in 

(b) 

FIG. 2. Contour plots of azimuthal velocity (D), meridional stream function (Y), isotherms (T) and iso- 
sehrtal lines (S). R, = 0.1. (a) St = 0.1; Iv/,,,~~ = 1.0~ lo-‘, IYI,,,.,, = 5.8X 10m3; (b) 3 = 1.0: 

bL = 4.6 x lo- ‘, l’l’l,,, = 5.4X 10-Z; (c) St = 10.0: IV],ar = 5.9x 10-l. plq,,, =2.2x lo-‘. 
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FIG. 3. Comparisons of the relative magnitudes of the terms in the vorticity equation (10). R, = 0. I : (a) 
St = 0.1, (b) St = 1.0, (c) Sf = 10.0. -: nonlinear advection term (A) ; - - - -: vertical shear of 
azimuthal velocity (B) ; : viscous term (C) ; - - -. - : horizontal temperature gradient (D) ; 

- - - - - - - : horizontal solute gradient (E). 

the interior are generally tilted from the lower side of 
the inner sidewall to the upper side of the outer side- 
wall. As is discernible in Fig. 3(a), in the interior 
region closer to the outer sidewall, the dominant bal- 
ance is between the vertical shear of azimuthal velocity 
(term (B) in equation (10)) and the horizontal gradient 
of temperature (term (D) in equation (10)). This is a 
manifestation of the well-known thermal wind 
relation. The stratification of the solutal field is mostly 
confined to the zones adjacent to the horizontal end- 
walls. In the middle portion of the cavity, due to 
the convective activities, the solutal field has been 
fairly homogeneous. The profile of the Nusselt num- 
ber at the inner sidewall Nul,=, shows a generally 
decreasing pattern with height ; this reflects the cluster 
of isotherms near the bottom portion of the inner 
sidewall. 

As the stratification number St increases, the rela- 
tive importance of the rotation decreases. Conse- 

quently, the convective activities, driven by the hori- 
zontally applied temperature gradient, intensify. The 
isotherms in the interior core exhibit the tendency of 

a horizontal alignment, suggesting an approach to a 
linear temperature stratification. As a result of these 
intense convective motions, the Nusselt number at the 
inner sidewall takes a larger value, in particular, near 
the bottom part of the inner sidewall. When St is 
large (see Fig. 2(c) for St = lO.O), the rotation effect is 
minor, and the global flow structure resembles that 

of a sidewall-heated thermal convection in a non- 
rotating environment. It should be mentioned here 
that, in the present formulation, the value of E 
increases with increasing St. Therefore, for the exam- 
ple treated in Fig. 2(c), appreciable viscous effects are 
also felt throughout the flow field. 

The results for R, = 1 .O are illustrated in Figs. 5-7. 
The effect of the flow-driving horizontal temperature 
gradient is comparable to the effect of the stable solu- 
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0.0 W 10.6 0.0 
r-1.0 

T 1 .o 0.0 S 1.0 

FIG. 4. Representative profiles of velocities, Nusselt number, temperature and solute. R,, = 0.1. The vertical 
profiles are along r = 0.5, and the horizontal profiles are along z = 0.5. ___ : Sf = 0. I, - - - - : 

St = 1.0, ~~- -: Sr = 10.0. 

tal gradient. It is readily seen in Figs. 5-7 that the 
convective activities are generally weaker than for 

R, = 0.1 (note the difference in magnitudes of I&,, 

and l’U,,x between Fig. 5 and Fig. 2). When St is 
small, as demonstrated in Fig. 5(a), due to the over- 
riding rotation effect, the convective velocities weaken 

considerably. Much of the meridional circulation is 
confined to the areas adjacent to the solid surfaces. 
The isotherms are almost parallel and vertical. This 

implies that heat transfer is dominated by conductive 
mode. The Nusselt number at the inner sidewall, 
therefore, is rather small and is fairly uniform with 
height. The iso-solutal lines in the interior are tilted 
from the upper portion of the inner sidewall to the 
lower portion of the outer sidewall. The tilting of the 
iso-solutal lines reflects the presence of weak con- 
vective motions in the interior. 

The profiles of the individual terms of equation (10) 

I 
T 

I 
S 

FIG. 5. Contour plots of azimuthal velocity (u), meridional stream function (Y), isotherms (T) and iso- 
solutal lines (S). R, = 1.0. (a) St = 0.1: IuI,,, =4.9x 10m3, lYlmax = 1.6~ 10e4; (b) St = 1.0: 

IaIln*, = 5.8 x lo-‘, IQ,, = 3.5 x lo-‘; (c) St = 10.0: I&,,, = 1.6x IO-‘, (‘I’\,,, = 3.1 x IO-‘. 
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I I I I I 
r-1.0 r=2.0 -6.7 6.7 

FIG. 6. Comparisons of the relative magnitudes of the terms in the vorticity equation (10). R, = 1.0 : (a) 
St = 0.1, (b) St = 1.0, (c) St = 10.0. -: nonlinear advection term (A) ; -- - -: vertical shear of 
azimuthal velocity (B) ; : viscous term (C) ; - - -. - : horizontal temperature gradient (D) ; 

- - - - ~ ~ -: horizontal solute gradient (E). 

are also revealing. The most notable dynamical 
ingredients for R, = 1.0 in the bulk of interior away 
from the inner sidewall are generally the thermal 
and solutal buoyancy terms. As the rotation effect 
becomes small. such terms as the Coriolis force 

(denoted by term (B) in equation (10)) weaken in 
magnitude. Therefore, the overall balance is main- 
tained by the two opposing buoyancy effects, and 
these observations are consistent with the computed 
results demonstrated in Figs. 5-7. As St increases, the 
relative influence of the rotational constraint dimin- 
ishes, and the global convective activities due to the 
thermal gradient strengthen accordingly. The tend- 
ency toward the horizontally aligned isotherms in the 
interior is evident in Fig. 5(c). The heat transfer is 
augmented by these vigorous convective motions, as 
displayed in Fig. 7. It is noticed here again that, as St 
increases, the value of E also increases in the present 
problem setup. The meridional circulations, as illus- 

trated in Fig. 5(c), are quite diffused and they fill much 
of the bulk of the interior. The solutal field in the 
interior generally increases rather monotonically with 
height. As St increases, the variations of S become 
somewhat steeper in the regions closer to the hori- 
zontal endwalls. 

Finally, the computed results for R, = 10.0 are 
depicted in Figs. 8-10. The effect of the stable solutal 
gradient dominates the flow-driving effect of hori- 
zontal temperature gradient. As anticipated, the con- 
vective activities are suppressed, and the heat transfer 
is controlled mostly by conduction. The isotherms 
are nearly parallel and vertical. The linearly stratified 
solutal field remains substantially undisturbed. The 
consequence of the largely conductive heat transfer 
turns up in the plots of Nul,, , . The Nusselt number 
at the inner sidewall is very small and is almost uni- 
form with height. As depicted in Fig. 9, the prominent 
dynamical effects are represented by the two opposing 
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0.0 Nu) r=l.O 5’4 

FIG. 7. Representative profiles of velocities, Nusselt number, temperature and solute. R, = 1 .O. The vertical 
profiles are along r = 0.5, and the horizontal profiles are along z = 0.5. -: St = 0.1, ~ -. - -: 

St = 1.6, : St = 10.0. 

buoyancy terms (terms (D) and (E) in equation (IO)). 
It is stressed in Fig. 8 that both the azimuthal and 
meridional flows are extremely small in magnitude 
(note the orders of magnitudes of the values of Iu(,,, 
and IYl,,,aX). In particular, when St is small, the con- 

centration of the meridional flows to narrow zones 
adjacent to the solid walls is notable. Both the profiles 
of u and W, as shown in Fig. 10, indicate that, in the 

bulk of the interior, virtually no meridional flows are 
discernible. 

4. CONCLUSION 

The computational results disclose the prominent 
features of axisymmetric double-diffusive convection 
in a rotating annulus. The objective is to depict the 

T S 

II 
(b) 

FIG. 8. Contour plots of azimuthal velocity (v), meridional stream function (Y), isotherms (T) and iso- 
solutal lines (S). R, = 10.0. (a) St = 0.1 : IuJ,,, = 9.6x IO-‘, lY’1,,, = 1.3 x 10-6; (b) St = 1.0: 

1t:1,,, = 5.8x lw4, /‘I’[,,,,, = 1.0x 1O-5; (c) St = 10.0: It&,, = 1.4x 10-3, J’Pjmax = 6.3 x lo-‘. 
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4.2x1 6’ 

-42x16’ 

rd.0 
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2.6k 6’ 

FIG. 9. Comparisons of the relative magnitudes of the terms in the vorticity equation (10). Z$ = 10.0: (a) 
Sr = 0.1, (b) St = 1.0, (c) St = 10.0. -: nonlinear advection term (A); -----: vertical shear of 
azimuthal velocity (B) ; 1: viscous term (C) ; - -. - ( -: horizontal temperature gradient (D) ; 

- - - - - - - : horizontal solute gradient (E). 

;111’ ~ =~;;‘\ 
I *- *- 

0.0 Nu) 
r-1.0 

1.7 9.9 T 1.0 9.0 s 1.0 

FIG. 10. Representative profiles of velocities, Nusselt number, temperature and solute. R,, = 10.0. 
The vertical profiles are along r = 0.5, and the horizontal profiles are along z = 0.5. -: 3 = 0.1, 

-.-.-.--_:S~=1,O.----:S~=lO.O, 



3782 H. J. SUXG rt ~(1. 

qualitative character of flow, subjected to the rotation 
effect. 

For a low buoyancy ratio, the effect of the flow- 
driving horizontal temperature gradient is dominant. 
Convection is generally vigorous, and large values of 
the Nusselt number are obtained. When St is small, 

the rotation effect is appreciable, and the convective 
flows weaken accordingly. When R,, takes a moderate 

value, the flow structure depends crucially on St. For 
a small St, the rotation effect is substantial, and the 
global flow field is strongly influenced by conduction. 
When the rotation effect is small (St large), convective 

activities are strengthened. For a large buoyancy 
ratio, the stabilizing solutal gradient suppresses con- 
vection. The resulting flows are very weak in the 
interior. The temperature field is horizontally linear, 

and the vertical solutal gradient is little affected. The 
heat transfer is dominated by conduction. 

These computational results will provide the base- 
line information on the qualitative features of the 
axisymmetric basic states. These could be utilized to 
develop stability analyses for more complicated three- 
dimensional flows. 

Ackno~,ledgement~Appreciation is extended to the referee 
whose comments led to substantial improvements in the 
revised version. 
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